Ask LukeW: Generation Model Testing

by May 25, 2025

The last two weeks featured a flurry of new AI model announcements. Keeping up with these changes can be hard without some kind of personal benchmark. For me, that's been my personal AI feature, Ask LukeW, which allows me to both quickly try and put new models into production.

To start... what were all these announcements? On May 14th, OpenAI released three new models in their GPT-4.1 series. On May 20th at I/O, Google updated Gemini 2.5 Pro. On May 22nd, Anthropic launched Claude Opus 4 and Claude Sonnet 4. So clearly high-end model releases aren't slowing down anytime soon.

Many AI-powered applications develop and use their own benchmarks to evaluate new models when they become available. But there's still nothing quite like trying an AI model yourself in a domain or problem space you know very well to gauge its strengths and weaknesses.

Ask LukeW Claude Opus 4 comparison question

To do this more easily, I added the ability to quickly test new models on the Ask LukeW feature of this site. Because Ask LukeW works with the thousands of articles I've written and hundreds of presentations I've given, it's a really effective way for me to see what's changed. Essentially, I know what good looks like because I know what the answers should be.

Ask LukeW system diagram

The Ask LukeW system retrieves as much relevant content as possible before asking a large language model (LLM) to generate an answer to someone's question (as seen in the system diagram). As a result, the LLM can have lots of content to make sense of when things get to the generation part of the pipeline.

Ask LukeW Claude Opus 4 comparison

Previously this resulted in a lot of "kitchen sink" style bullet point answers as frontier models mostly leaned toward including as much information as possible. These kinds of replies ended up using lots of words without clearly getting to the point. After some testing, I found Anthropic's Claude Opus 4 is much better at putting together responses that feel like they understood the essence of a question. You can see the difference in the before and after examples in this article. The responses to questions with lots of content to synthesize feel more coherent and concise.

It's worth noting I'm only using Opus 4 is for the generation part of the Ask LukeW pipeline which uses AI models to not only generate but also transform, clean, embed, retrieve, and rank content. So there's many other parts of the pipeline where testing new models matters but in the final generation step at the end, Opus 4 wins. For now...